Sollten Sie Interesse am Internet-Pokern haben, rate ich Ihnen zu einem Besuch von Everest Poker. Mit Eröffnung eines Everest Poker-Spielerkontos haben Sie die Möglichkeit, einen $100-Willkommensbonus zu erhalten. Ich kann Ihnen diesen Pokerraum wirklich nur empfehlen, da Sie hier eine hervorragende Auswahl an Pokertischen und einen enorm hohen Anteil an „kleinen Fischen“ (Anfänger und ungeübte Spieler) vorfinden!

|[English] [Français]|
|[ProbabilityOf.com Hauptseite (Englisch)]|

 

 

 

 

 

QA – Poker (Schürhaken) Wahrscheinlichkeiten

 

 

 

 

 

 

 


Log............................................................................................................................................................................................................ 3

Poker-Wahrscheinlichkeiten................................................................................................................................................ 4

Poker (Encyclopædia Britannica).................................................................................................................................... 4

Poker wahrscheinlichkeit im 52 Kartensatz-poker............................................................................................. 6

Wahrscheinlichkeit....................................................................................................................................................................... 6

Q: Was ist die Wahrscheinlichkeit, die gerades Straight Flush, Vierling, Full House etc. erhält, wenn es fünf Karten gegeben wird?........................................................................................................................................................................................................... 6

Conditional probabilities.................................................................................................................................................. 11

Q: What is the probability to get a House or Four of a kind if you have Three of a kind, and choose to change two or one of the remaining cards?......................................................................................................................................................................... 11

Q: What is the probability to get a house if you have Two Pair, and choose to change the remaining card?.......... 12

Q: What is the probability to get a house, four of a kind, three of a kind or Two Pair if you have a Pair, and choose to change 2 or 3 of the remaining Cards?............................................................................................................................................................. 13

Q: What is the probability that the other players get at least one pair, two pair etc. when the 5 cards are dealt?. 17

Q: What is the probability that the other players get at least one pair, two pair etc. when all have changed cards? 17

Poker probability in 32-card deck poker................................................................................................................... 18

Introduction............................................................................................................................................................................... 18

Probabilities................................................................................................................................................................................ 18

Q: What is the probability getting Straight Flush, Four of a Kind, House etc. when given five Cards?.................... 18

References........................................................................................................................................................................................ 20

 


Log

Date

Deskription

2000-01-27

Erste Version veröffentlichte bei http://www.pvv.org/~nsaa/poker.html

2006-06-26

Partly Translated the last English version at http://www.probabilityof.com/poker.shtml to German (de - ISO 639-1) 


Poker-Wahrscheinlichkeiten

Dieses Dokument wurde ursprünglich nach irgendeiner kräftigen Diskussion zwischen mir und einigen meiner Freunde erstellt. Was die beste Klage ist: Flush oder Straße? Wenn du Standard five-card abgehobenen Betrag spielst und du hast ein Paar und ein As. Solltest du das Paar/Zwilling halten oder solltest du das As auch halten? Was über das Spielen mit 32 Kartensatz? Dieses Dokument tut diese Berechnungen und viel mehr. Während des Momentes hat dieses Dokument nicht von dem Texas Hold’em Schürhakenvariante gehandelt.

 

Ich habe auch irgendeine Preisangabe von anderen Quellen getan, in denen ich Fehlberechnung behoben habe. Dieses wurde getan, bevor die erste Version dieses Dokumentes bei 2000-01-17 veröffentlicht wurde, als gute Schürhakenberechnungen nicht allgemein vorhanden waren. Heute erklärt Einstellung wie die Wikipedia Artikel Poker Probability (English) und gibt die Standardwahrscheinlichkeiten sehr gut an. 

Poker (Encyclopædia Britannica)

Ich Wille in diesem Abschnittgeben, das etwas Bemerkung von einem on-line-Artikel über Schürhaken veröffentlichte, bei http://www.britannica.com/bcom/eb/article/6/0,5716,62116+1,00.html, aber jetzt entfernte.

 

Der Text im Kursiv ist von diesem Artikel in Encyclopædia Britannica.

 

 Poker

 

 a family of card games, almost invariably played as gambling games. Although played internationally, Poker is most popular in North America.

 

Heute wird Poker auf der ganzen Erde gespielt und ist überall, hauptsächlich wegen des Internets und der Möglichkeit extrem populär, äußere Zustandon-line-steuerung zu spielen, deren sehr einschränkend in den meisten Ländern.

 

 A Poker hand usually consists of five cards. Players try for combinations of two or more cards of a kind, five-card sequences, or five cards of the same suit. (See below Rank of Hands.)

 

Heute ist Texas Hold’em die populärste Hauptströmungsvariante, hauptsächlich weil es auf der Fernsehen gelüfteten World Series of Poker  (abgekürztes WSOP) gespielt hat, weit erkannt als die Weltmeisterschaft des Spiels. Die meisten on-line-Kasinos bieten auch Varianten des Texas Hold’em als das Standardspiel im on-line-Schürhaken an. Texas Hold’em besteht zwei Karten unten und aus fünf Karten oben, d.h. sieben Karten, um für jeden Spieler an der runden Endrunde zu verwenden.

 

 Poker is played with a standard 52-card deck in which all suits are of equal value, the cards ranking from the ace high, downward through king, queen, jack, and the numbered cards 10 to the deuce. The ace may also be considered low to form a straight (sequence) ace through five as well as high with king-queen-jack-10.

 

Ich habe Poker mit 32 Kartensatz in Deutschland gespielt und während du unterhalb der Klassifizierung der Hand sehen kannst, ändere!

 

Rank of hands.

 

 The traditional ranking is (1) straight flush (five cards of the same suit in sequence, the highest ace-king-queen-jack-ten being called a royal flush; (2) four of a kind, plus any fifth card; (3) full house; (4) flush; (5) straight; (6) three of a kind; (7) two pair; (8) one pair; (9) no pair, highest card determining the winner.

 

Unter habe mir alle Möglichkeiten, nicht gerechtes Geben der Rank errechnet. Wie ich oben angab, 32 Kartensatz, Änderungen dieser Rank.

 

To determine the winner in hands in which there are hands of the same rank, the one containing the highest card wins. If the high cards are identical, the second highest wins, and so on. With full houses, the higher three of a kind wins; with two pairs, the highest pair wins, or if the pairs are identical, the odd high card wins, as in the case of identical pairs. For the occasion when none of the above applies, e.g., two flushes with identical cards in different suits, house rules may apply (the winning hand being the one in the higher bridge suit, or the two hands may split the pot). There is no universally accepted code of Poker rules. A code prepared by Oswald Jacoby in 1940 and a set of rules in the United States Playing Card Company's Official Rules of Card Games, published from 1945, are the ones usually adopted subject to house rules in the United States.

 

Viele Leute, die Schürhaken spielen, fangen an, was zu argumentieren zu tun, wenn zwei Leute dasselbe bündig mit identische Karten in den unterschiedlichen Klagen haben.  Eine Richtlinie aufstellen, bevor das Spiel den Topf 50/50 als Rückstellung angestellt oder aufgespaltet hat, wenn nichts sonst vereinbart worden ist.

 

 Wild cards. Most serious poker players decry the use of wild cards, but among the less serious, a wild card can be declared by the dealer (the deuce is most popular, but any rank can be used, or a distinguishable face card: the one-eyed jack). When there are wild cards in the game, the highest hand becomes five of a kind, though some house rules preserve the sanctity of the royal flush

 

beachten, dass wilde Karte die Wahrscheinlichkeit ernsthaft ändern kann und ich mich wirklich wilde, empfehle Karten nicht in jedem ernsten Spiel zu verwenden. Du solltest die Wahrscheinlichkeiten mindestens berücksichtigen und den korrekten Rank errechnen lassen (wenn er ihn ändert - ich habe nicht dieses errechnet, also kann ich nicht wirklich Sagen). Aber einen Durchgang in der wilden Karte des Artikels Wikipedia Wild card (poker) (English).

 

Another issue with wild cards is that they distort the hand frequencies. In 5-card stud, the stronger hands are less frequent than the weaker hands; i.e., no pair is most common, followed by one pair, two pair, three of a kind, etc. When you add wild cards, the stronger hands gain frequency while the weaker hands lose frequency. For example, if you have a pair and a wild card, you will always choose three of a kind rather than two pair. This causes three of a kind to be more common than two pair.


Poker Wahrscheinlichkeit im 52 Kartensatz-poker

 

Über den Rank.

Wahrscheinlichkeit

Q: Was ist die Wahrscheinlichkeit, die gerades Straight Flush, Vierling, Full House etc. erhält, wenn es fünf Karten gegeben wird?

 

A: Wahrscheinlichkeit, die unterschiedliche Hände erhält, wenn Sie fünf Karten behandelt werden

 

(Rank der Hände)

Wahrscheinlichkeit, die diese Hand erhält:

Aus COMB (52;5) = 2598960 Möglichkeiten, fünf Karten zu zeichnen erhältst du den folgenden Händen diese Zahl von Zeiten

Genaue Wahrscheinlichkeit

Ca. Wahrscheinlichkeit 1/

Ca. Wahrscheinlichkeit numerisch.

Royal Flush

4

1/649740

1/649740

0,00000154

Straight Flush

36

9/649740

1/72193

0,0000139

Poker/Vierling (Four Of A Kind)

624 [5]

1/4165

1/4165

0,000240

Full House

3744[11]

6/4165

1/694

0,00144

Flush

5108 [8]

1277/649740

1/509

0,00197

Straße

10200

5/1274

1/255

0,00392

Drilling (Three Of A Kind)

54912

88/4165

1/47

0,0211

Zwei Paare (Two Pairs)

123552

198/4165

1/21

0,0475

Paar/Zwilling (One Pair)

1098240[11]

352/833

1/2.4

0,423

Höchste Karte (High Card)

1302540

1302540/2598960

1/2

0,501

 

Wahrscheinlichkeit, die mindestens diese Hand erhält:

Aus COMB (52;5) = 2598960 Möglichkeiten, fünf Karten zu zeichnen erhältst du den folgenden Händen diese Zahl von Zeiten

Genaue Wahrscheinlichkeit

Ca. Wahrscheinlichkeit 1/

Ca. Wahrscheinlichkeit numerisch.

Royal Flush

4

 

1/649740

0,00000154

Straight Flush

40

 

1/64974

0,0000154

Poker/Vierling (Four Of A Kind)

664

 

1/3914

0,000256

Full House

4408

 

1/590 [1]

0,00170

Flush

9516

 

1/273

0,00366

Straße

19716

 

1/132

0,00759

Drilling (Three Of A Kind)

74628

 

1/35

0,0287

Zwei Paare (Two Pairs)

198180

 

1/13

0,0763

Paar/Zwilling (One Pair)

1296420

 

1/2 [1]

0,499

Höchste Karte (High Card)

2598960

 

1

1

 

1 in 5 für mindestens ein Paar Steckfassungen (11)  [1]

 

Warum:

 

P(House) = 13*12*COMBIN(4;3)*COMBIN(4;2) = 3744

 

Warum?

 13*12, weil: 13 Spalten horizontal und 12 Reihen vertikal

   1-1-1-2-2        2-2-2-1-1        ...   13-13-13-1-1

   1-1-1-3-3        2-2-2-3-3              13-13-13-2-2

   1-1-1-4-4        2-2-2-4-4              13-13-13-3-3

   ...

   1-1-1-13-13-13   2-2-2-13-13-13         13-13-13-12-12

 

Lässt Blick bei einem von diesem 1-1-1-2-2

Du hast Combin (4; 3) zum 1-1-1 und Combin zu zeichnen (4; 2) zum 2-2 zu zeichnen

 

P(Drilling) = 13*COMBIN(48;2)*(COMBIN(4;3) - P(House)

               = 13*1128*4 - 3744

               = 54912

 

 Warum?

 13*COMBIN (48; 2) 13 Spalten horizontal und Combin (48; 2) Reihen Vertikale als oben

   1-1-1-2-2        2-2-2-1-1        ...   13-13-13-1-1

   1-1-1-2-3        2-2-2-1-3              13-13-13-1-2

   1-1-1-2-4

   1-1-1-2-5

   ...

   1-1-1-3-3        2-2-2-3-3              13-13-13-2-2

   1-1-1-3-4        2-2-2-3-4              13-13-13-2-3

   1-1-1-3-5

   ...

   1-1-1-4-4        2-2-2-4-4              13-13-13-3-3

   ...

   1-1-1-13-13-13   2-2-2-13-13-13         13-13-13-12-12

 

Lässt Blick bei 1-1-1-2-3. Du hast Combin (4; 3) Möglichkeiten, 1-1-1 zu zeichnen. Da wir jetzt alles 1-1-1-2-2.1-1-1-3-3 etc. gezählt haben, müssen wir Substract die Hausberechnung.

 

- Eine andere Weise, sie zu betrachten ist so

Du hast 13 Spalten. Lässt Blick an 1-1-1-y-x. Du hast Combin (4; 3) Möglichkeiten, 1-1-1 und dich zu zeichnen Combin haben (48; 2) zum von y-x zu zeichnen. Da wir jetzt alles 1-1-1-2-2.1-1-1-3-3 etc. gezählt haben, müssen wir Substract die Hausberechnung.

 

Von [14] : http://www.thewizardofodds.com/game/pokerodd.html

Royal Flush

The number of different royal flushes are four (one for each suit).

Straight Flush

The highest card in a straight flush can be 5,6,7,8,9,10,Jack,Queen, or King. Thus there are 9 possible high cards, and 4 possible suits, creating 9 * 4 = 36 different possible straight flushes.

Four of a Kind

There are 13 different possible ranks of the 4 of a kind. The fifth card could be anything of the remaining 48. Thus there are 13 * 48 = 624 different four of a kinds.

Full House

There are 13 different possible ranks for the three of a kind, and 12 left for the two of a kind. There are 4 ways to arrange three cards of one rank (4 different cards to leave out), and combin(4,2) = 6 ways to arrange two cards of one rank. Thus there are 13 * 12 * 4 * 6 = 3,744 ways to create a full house.

Flush

There are 4 suits to choose from and combin(13,5) = 1,287 ways to arrange five cards in the same suit. From 1,287 subtract 10 for the ten high cards that can lead a straight, resulting in a straight flush, leaving 1,277. Then multiply for 4 for the four suits, resulting in 5,108 ways to form a flush.

Straight

The highest card in a straight flush can be 5,6,7,8,9,10,Jack,Queen,King, or Ace. Thus there are 10 possible high cards. Each card may be of four different suits. The number of ways to arrange five cards of four different suits is 45 = 1024. Next subtract 4 from 1024 for the four ways to form a flush, resulting in a straight flush, leaving 1020. The total number of ways to form a straight is 10*1020=10,200.

Three of a Kind

There are 13 ranks to choose from for the three of a kind and 4 ways to arrange 3 cards among the four to choose from. There are combin(12,2) = 66 ways to arrange the other two ranks to choose from for the other two cards. In each of the two ranks there are four cards to choose from. Thus the number of ways to arrange a three of a kind is 13 * 4 * 66 * 42 = 54,912.

Two Pair

There are (13:2) = 78 ways to arrange the two ranks represented. In both ranks there are (4:2) = 6 ways to arrange two cards. There are 44 cards left for the fifth card. Thus there are 78 * 62 * 44 = 123,552 ways to arrange a two pair.

One Pair

There are 13 ranks to choose from for the pair and combin(4,2) = 6 ways to arrange the two cards in the pair. There are combin(12,3) = 220 ways to arrange the other three ranks of the singletons, and four cards to choose from in each rank. Thus there are 13 * 6 * 220 * 43 = 1,098,240 ways to arrange a pair.

Nothing

First find the number of ways to choose five different ranks out of 13 which is combin(13,5) = 1287. Then subtract 10 for the 10 different high cards that can lead a straight, to be left with 1277. Each card can be of 1 of 4 suits so there are 45=1024 different ways to arrange the suits in each of the 1277 combinations. However we must subtract 4 from the 1024 for the four ways to form a flush, leaving 1020. So the final number of ways to arrange a high card hand is 1277*1020=1,302,540.

 

Specific High Card Lets find the probability of drawing a jack high, for example. There must be four different cards in the hand all less than a jack, of which there are 9 to choose from. The number of ways to arrange 4 ranks out of 9 is combin(9,4) = 126. We must then subtract 1 for the 9-8-7-6-5 combination which would form a straight, leaving 125. From above we know there are 1020 ways to arrange the suits. Multiplying 125 by 1020 yields 127,500 which the number of ways to form a jack high hand. For ace high remember to subtract 2 rather than 1 from the total number of ways to arrange the ranks since A-K-Q-J-10 and 5-4-3-2-A are both valid straights.

Five Card Draw High Card Hands

Hand

Combinations

Probability

Ace high

502,860

0.19341583

King high

335,580

0.12912088

Queen high

213,180

0.08202512

Jack high

127,500

0.04905808

10 high

70,380

0.02708006

9 high

34,680

0.01334380

8 high

14,280

0.00549451

7 high

4,080

0.00156986

Total

1,302,540

0.501177394

 

 

 

Von [11] http://www.sscnet.ucla.edu:80/soc/faculty/campbell/210a_Fall1997/210a_notes_10_14_97.htm

 

The first thing we need to know is how many elementary events there are that can occur. We just calculated it, it's 52!/(47!*5!)=2598960. Now all we have to do is work out how many hands correspond to each of the above three situations, and divide by this number.

 

PAIR:

To dealing with the probability of the pairs first, the first thing is to work out how many possible pairs there are. Well for any given value, there are (4 2) pairs that can be drawn, and there are 13 possible values, so there are 13 (4 2) ways of having a pair. How many combinations of the remaining 12 values are there that do not result in a pair among the remaining three cards? (12 3) Thus given 12 remaining values, there are (12 3) of picking three distinct ones from them, for example, 2 3 4, 2 3 5, 2 3 6, .... K Q A. Of course, for each of the three cards any suit is OK, we can have any combination of the 4 suits, so we have to multiply by 4^3. Thus the probability of having one pair, and three distinct remaining cards, is 13 (4 2) (12 3) 4^3 / (52 5). If we work it out, it's about 0.40.

 

FULL HOUSE:

A similar approach can be taken for the full house. There are 13 (4 3) 12 (4 2) ways of having a full house, so the total probability

of a full house is 13 (4 3) 12 ( 4 2) / (52 5) = 0.0014.

 

FLUSH

A flush is 4 (13 5)/(52 5)

 

Was über Royal Straight flush? Substract 40! benötigen Sie!

 

FOUR OF A KIND

What about four of a kind? There are 13 ways of four of a kind, 12 choices for the remaining card, so 13*12 / (52 5). Pretty

unlikely!

 

UNRECHT! Nicht 12 Wahlen für die restlichen Karten ABER 48. Sehen [ 5 ] wer mit mir übereinstimmt.

 

Flush: (From http://www.schoolnet.ca/vp-pv/amof/e_combI.htm)

We give now a simple question that can be answered with a knowledge combinations and binomial coefficients. What is the probability of getting a flush in a five card poker hand on the initial deal? (A flush means that all five cards are in the same suit.) First, we have to recognize that a five card poker hand is a combination of 5 cards chosen from 52 cards. Thus the total number of possible hands is the binomial coefficient C(52,5) = 2,598,960. The ranks of the cards making up the flush is a combination of 5 ranks chosen from 13 rank. The suit of the cards making up the flush is a combination of 1 suit chosen from 4 suits. Multiplying,

there are thus C(13,5)*C(4,1) = 1287*4 = 5148 ways of getting a flush. The probability of getting a flush is the ratio of the number of ways of getting a flush divided by the total number of hands; it is 5148/2598960 = 33/16660 = .001980792317. Not very high

odds --- about 2 in every 1000 hands!

 

Müssen Sie Erröten 4 (Royal flush) und 36 Straight flush.


Bedingte Wahrscheinlichkeiten

Q: Was ist die Wahrscheinlichkeit, zum eines House oder des Vierling zu erhalten, wenn Sie Drilling haben, und zu beschließen, zwei oder eine der restlichen Karten zu ändern?

 

Zusammenfassung

Sie haben Drilling und ändern Karten

Erhält Haus

Erhält Vierling

Gesamtmenge

2

0,0611

0,0425

0,1036 (ca.. 1/9)

1

0,0638

0,021

0,0851 (ca. 1/12)

Sie sollten zwei Karten immer ändern. Dann erhalten Sie ein Haus oder ein Vierling in 1 aus 9mal heraus.

 

 Zusammenfassung mit Brüchen

Sie haben Drilling und

Ändern Sie 2 Karten - Wahrscheinlichkeit

Ändern Sie 1 Karten - Wahrscheinlichkeit

Selben (Drilling)

969/1081 (ca. 1/1,1)

43/47 (ca. 1/1.09)

House oder besseres

112/1081 (ca. 1/9)

4/47 (ca. 1/12)

 

House

 

66/1081 (ca. 1/16)

 

3/47 (ca. 1/16)

 

Vierling

 

46/1081 (1/23.5)

 

1/47

 

WARUM:

Ändern Sie 2 Karten

 

Es gibt Comb(47;2) = 1081 mögliche Möglichkeiten, 2 Karten von den restlichen (52-5 =) 47 unbekannten Karten zu zeichnen.

 

P(House | Drilling und UND ändern 2) =

(2*Combin(3;2) +

10*Combin(4;2))/Comb (47;2) =

66/1081 (ca. 1/6)

 

Warum? Sie erhielten z.B. diese Hand 7-7-7-6-8, werfen Sie weg sechs und acht. 2*Combin(3;2)  : (7-7-7-6-6 oder 7-7-7-8-8) ist es 3 sechs ' oder 3 acht in den restlichen 47 Karten. 10*Combin(4;2)  : (7-7-7-1-1 oder 7-7-7-2-2 oder usw.) ist es 4 irgendjemandes, 4 zwei, usw. in den restlichen 47 Karten.

 

P(Vierling | Drilling UND ändern 2) =

(Combin(1;1)*(47-1))/Comb(47;2) =

46/1081 (ca. 1/23.5)

 

Warum? Sie erhielten z.B. diese Hand 7-7-7-6-8 und Sie werfen weg 6-8.

Sie haben 1 sieben unter den restlichen 47 unbekannten Karten. Es ist möglich, diese sieben mit allen anderen 46 unbekannten Karten zu kombinieren.

 

P(House ODER Vierling | Drilling UND ändern 2) =  

(66+46)/Comb(47;2) =

112/1081 (ca. 1/9)

 

Ändern Sie 1 Karte

 

Es gibt Comb(47;1) = 47 mögliche Möglichkeiten, Karten 1 von den restlichen (52-5 =) 47 unbekannten Karten zu zeichnen.

 

P(House | Drilling UND ändern 1) =

Comb(3;1)/Comb(47;1) =

3/47 (ca.. 1/15)

Warum? Sie erhielten z.B. diese Hand 7-7-7-6-8 und Sie werfen weg die acht. Sie haben 3 sechs unter den restlichen 47 unbekannten Karten.

P(Vierling | Drilling UND ändern1) =

1/Comb(47;1) =

1/47

 

P(House OR Vierling | Drilling UND ändern 1) =

(3+1)/Comb(47;1) =

4/47 (ca.. 1/12)

 

 

 

Q: Was ist die Wahrscheinlichkeit, zum eines Hauses zu erhalten, wenn Sie zwei Paar haben, und zu beschließen, die restliche Karte zu ändern?

 

A:

P(House | Zwei Paare) = (2+2)/Comb(47;1) = 4/47 (ca. 1/12)

Warum? Z.B. Sie haben dieses zwei Paare (12, 12) und (3, 3) und Sie werfen die fünfte Karte weg (5). Dann haben Sie 47 restliche (52-5) Karten, in denen 2 von ihnen 12's sind und zwei von ihnen 3 sind. Dann ist sie 4 aus 47 heraus, zum entweder dritte 12 oder dritte 3 zu erhalten.

 


Q: Was ist die Wahrscheinlichkeit, zum eines House, Vierling, Drilling oder zwei paare, wenn Sie ein Paar haben, und zu beschließen, 2 oder 3 der restlichen Karten zu ändern zusammen?

 

A: Es gibt vier Strategien. Halten Sie alle Karten, Änderung eine, zwei oder drei der restlichen Karten. Es liegt beendigtes auf der Hand, dass Sie entweder zwei oder drei Karten immer ändern sollten, wenn Sie Ihre Wahrscheinlichkeit maximieren, um bessere Karten zu erhalten (ausgenommen, wenn Sie "täuschen").

 

 

Zusammenfassung

Sie haben ein Paar und ändern x Karten

Erhalten Sie Zwei Paare

Erhalten Sie Drilling

Erhält House

Erhält Vierling

Gesamtmenge

3

0,160

0,11

0,01

0,0028

0,29

2

0,172

0,078

0,0083

0,00093

0,26

 

 

Zusammenfassung mit Brüchen

Sie haben ein Paar und

Ändern Sie 3 Karten - Wahrscheinlichkeit

Ändern Sie 2 Karten - Wahrscheinlichkeit

Selben (ein Paar)

11559/16215 (ca. 1/1,4)

801/1081 (ca. 1/1,3)

Zwei Paar oder besser

4656/16215 (ca. 1/3,5)

280/1081 (ca. ¼)

 

Zwei Paare

 

2592/16215 (ca. 1/6)

 

186/1081 (ca. 1/6)

 

Drilling

 

1854/16215 (ca. 1/9)

 

84/1081 (ca. 1/13)

 

House

 

165/16215 (ca. 1/98)

 

9/1081

 

Vierling

 

45/16215 (ca. 1/360)

 

1/1081[1]

 

 

WARUM:

Ändern Sie 3 Karten

 

Es gibt Comb(47;3) = 16215 mögliche Möglichkeiten, 3 Karten von den restlichen (52-5 =) 47 unbekannten Karten zu zeichnen.

 

P(Two pair | one pair AND change 3) =

(Combin(3;2)*3*(47-2-1-2) +

Combin(4;2)*9*(47-2-2-2))/Combin(47;3)=

(378+2214)/16215=

2592/16215 (approx. 1/6)

 

Why? You have 5 known Cards where two of them are a pair, and the rest is different (ex. 7-7-5-6-8). You have 47 remaining unknown Cards. This 47 unknown Cards contains a pair (7-7), 3 three of a kind (5-5-5, 6-6-6, 8-8-8) and 9 Four of a kind (1-1-1-1,2-2-2-2,3-3-3-3,4-4-4-4,9-9-9-9,…,13-13-13-13).

You are not interested in the other pair. This card will give you three or four of a kind.

 

The 3 Three of a kind can be combined in 3*Combin(3;2) ways. This again can be combined with 47 (all unknown) – 3 unknown cards used in Combin(3;2) – 2 other cards belonging to the pair (other two 7’s).

 

The 9 Four of a kind can be combined in 9*Combin(4;2) ways. This again can be combined 47 (all unknown) – 4 unknown cards used in Combin(4;2) ) – 2 other cards belonging to the pair (other two 7’s).

 

 

You still don’t believe me?

 

You got this hand 7-7-5-6-8 and you throw away 5-6-8. Then the possibilities to get two pair with either 5-5, 6-6 or 8-8 combined with 7-7 is:

5-5-x

5-x-5

x-5-5

In these 3 combinations the last single Card can be substituted with all remaining 47 Cards except the three 5’s and the two other 7’s.

=3*(47-2-1-2)

added by

6-6-x

6-x-6

x-6-6

In these 3 combinations the last single Card can be substituted with all remaining 47 Cards except the three 6’s and the two other 7’s.

=3*(47-2-1-2)

added by

8-8-x

8-x-8

x-8-8

In these 3 combinations the last single Card can be substituted with all remaining 47 Cards except the three 6’s and the two other 7’s.

=3*(47-2-1-2)

=3*3*(47-2-1-2)

=3*Combin(3;2)*(47-2-1-2)

=378

 

In the same manner

 

You got this hand 7-7-5-6-8 and you throw away 5-6-8. Then the possibilities to get two pair with either 1-1,2-2,3-3,4-4, 9-9,10-10,11-11,12-12 or 13-13 combined with 7-7 is:

1-1-x-x

1-x-1-x

1-x-x-1

x-1-1-x

x-1-x-1

x-x-1-1

In these 6 combinations the last Card can be substituted with all remaining 47 Cards except the four 1’s and the two other 7’s.

=6*(47-2-2-2)

added by

2-2-x-x

….

etc..

=9*6*(47-4)

=9*Combin(4;2)*(47-2-2)

=2214

Q.E.D.

 

 

P(Three of a kind | one pair AND change 3) =

[Combin(2;1)*Combin((47-2);2)

-Combin(2;1)*3*Combin(3;2)

-Combin(2;1)*9*Combin(4;2)]/16215=

2*(990-9-54)/16215=

1854/16215 (approx. 1/9)

 

Why?  You have 5 known Cards where two of them are a pair, and the rest is different(f.ex. 7-7-5-6-8). You have 47 remaining unknown Cards. This 47 unknown Cards contains a pair (7-7), 3 three of a kind (5-5-5, 6-6-6, 8-8-8) and 9 Four of a kind (1-1-1-1,2-2-2-2,3-3-3-3,4-4-4-4,9-9-9-9,…,13-13-13-13).

 

You have two 7’s that will give you the Third 7 (Combin(2;1))and 47-2 other cards to fill the Combin(45;2) remaining hand.

 

You need to subtract the possible house you can get with either 5-5, 6-6 or 8-8. F.ex. 7-7-7-5-5. You have 3 pair like this, and each pair can be drawn out of three 5’s, 6’s or 8’s (Combin(3;2)) . The two remaining 7’s Combin(2;1).

 

You also need to subtract the house you can get with either 1-1, 2-2, 3-3,4-4,9-9,…or 13-13. F.ex. 7-7-7-1-1You have 9 pair like this, and each pair can be drawn out of four 1’s, 2’s, 3’s etc.(Combin(4;2)) . The two remaining 7’s Combin(2;1).

 

P(House | one pair AND change 3) =

(3*Combin(3;3) +

9*Combin(4;3) +

Combin(2;1)*3*Combin(3;2) +

Combin(2;1)*9*Combin(4;2) )/16215=

165/16215 (approx. 1/98)

 

Why? You got this hand 7-7-5-6-8 and you throw away 5-6-8.

 

Add the bullet points:

House with the pair (7-7)

·         You have three 5-5-5, 6-6-6, 8-8-8 (3*Combin(3;3)) 

·         and nine 1-1-1-1,2-2-2-2, etc (9*Combin(4;3))

 

House with an extra card in the pair (7-7-7)

You can draw the extra 7 in Combin(2;1) ways.

·         You have three 5-5-5, 6-6-6, 8-8-8. You can draw 2 out of 3 of these (Combin(2;1)*3*Combin(3;2)). 

·         And nine 1-1-1-1,2-2-2-2, … , etc You can draw 2 out of 4 of these (Combin(2;1)*9*Combin(4;2)).

 

P(Four of a kind | one pair AND change 3) =

(Combin(2;2)*(47-2))/16215=

45/16215 (approx. 1/360)

 

Why? You got this hand 7-7-5-6-8 and you throw away 5-6-8. Then the possibility to get the two other 7’s is all the 47 remaining unknown Cards except the two last 7’s.

 


Change 2 Card

 

There are Comb(47;2) = 1081 possible ways to draw 2 Cards from the remaining (52-5=) 47 Cards.

 

P(Two pair | one pair AND change 2) =

(Combin(3;1)*(47-3-2) +

9*Combin(4;2) +

2*Combin(3;2))/Combin(47;2)=

186/1081 (approx. 1/6)

 

Why? You got this hand 7-7-5-6-8 and you throw away 6-8

Combin(3;1)*(47-3-2)  : (7-7-5-5-*) One out of three 5’s multiplied by the 47 remaining - three 5’s - two 7’s

 

P(Three of a kind | A Pair AND Change 2) =

(Combin(2;1)*(47-3-2))/Combin(47;2) =

84/1081 (approx. 1/13)

 

Why? You got this hand 7-7-5-6-8 and you throw away 6-8

Combin(2;1)*(47-3-2)  : (7-7-5-7-*) One out of two 7’s multiplied by the 47 remaining - three 5’s - two 7’s.

 

P(House | A Pair AND Change 2) =

(Combin(3;2)+

Combin(2;1)*Combin(3;1))/Combin(47;2) =

(3+6)/1081

9/1081

 

Why? You got this hand 7-7-5-6-8 and you throw away 6-8

Combin(3;2) : 7-7-5-5-5 – You can draw two 5 out of tree remaining.

Combin(2;1)*Combin(3;1) : 7-7-5-7-5 One out of two 7’s and one out of three 5’s

 

P(Four of a kind | A Pair AND Change 2) =

Combin(2;2)/Combin(47;2) =

1/1081

 

 

Q: What is the probability that the other players get at least one pair, two pair etc. when the 5 cards are dealt? 

A: <…missing for the moment…>

Q: What is the probability that the other players get at least one pair, two pair etc. when all have changed cards?

 

-Suppose that people just throw away cards that don’t destroy any (one pair, two pair etc.)

A: <…missing for the moment…>


Poker probability in 32-card deck poker

 

Introduction

I’ve played 32 card deck poker in Germany and I discussed a lot with people what’s the correct rank of hands. As you see below it’s more difficult to get Flush than Four of a kind when you’re playing with 32 cards!

 

Probabilities

Q: What is the probability getting Straight Flush, Four of a Kind, House etc. when given five Cards?

 

A: Probability getting different hands when dealt five Cards

 

(Rank of Hands)

Probability getting this hand:

Out of comb(32;5) = 201376 ways to draw five cards you will get the following hands these number of times

Exact probability

Approx.

Probability 1/

Approx. Probability num.

Royal flush

4

1/50344

1/50344

0.0000199

Straight flush

12

3/50344

1/16781

0.0000596

Flush

208

 

1/968

0.00103

Four of a Kind

224

 

1/899

0.00111

House

1344

 

1/150

0.00667

Straight

4080

 

1/49

0.0203

Three of a Kind

10752

 

1/19

0.0533

Two Pair

24192

 

1/8

0.120

One Pair

107520

 

1/1.9

0.534

None

53040

 

1/3.8

0.263

 

 

Probability getting at least this hand:

Out of comb(32;5) = 201376  ways to draw five cards you will get the following hands these number of times

Exact probability

Approx.

Probability 1/

Approx. Probability num.

Royal flush

4

 

1/50344

0.0000199

Straight Flush

16

 

1/12586

0.0000795

Flush

224

 

1/899

0.00111

Four of a Kind

448

 

1/449

0.00222

House

1792

 

1/112

0.00900

Straight

5872

 

1/34

0.0292

Three of a Kind

16624

 

1/12

0.0826

Two Pair

40816

 

1/5

0.203

One Pair

148336

 

1/1.36

0.737

None

201376

 

1

1

 

Why:

 

You have

 

Royal Straight Flush

<…missing for the moment…>

References

 

[1]

http://www.britannica.com/bcom/eb/article/6/0,5716,62116+3,00.html

 

[2]

http://search.britannica.com/bcom/search/results/advanced/1,5844,4,00.html?p_query0=Poker&p_phraseT0=1

 

[3]

“Profitable Things to Watch in a Poker Game” http://www.cardplayer.com:80/caro.htm

1.      First question: Is this game worth my time? I need to see mistakes made by others that I wouldn't make myself. If I can't spot them, I'm probably in a bad game.

2.      Second question: What is my fantasy seat? By applying the criteria we've talked about in previous lessons (sit to the left of the loose players so that they act before you, also sit to the left of knowledgeable, aggressive players, and sit to the right of tight nonentity players)

3.      Try to reconstruct hands. Focus on just one opponent and – after seeing the showdown and while the next deal is being prepared - go back mentally and try to equate that player's hand with how he played at each stage of the action

4.      When looking for tells, focus on just one player.

5.      When you're out of a hand and don't feel like observing, don't.

6.      A simple, accurate way to rate your table. For 20 hands that you're not involved in: (a) Add one point for each call; (b) Subtract one point for each raise; and (c) Subtract one extra point for each check-raise (minus two points total). First bets are ignored in the count. Reraises count as a single raise (minus one point). All players' actions count, even when they act more than once on a single betting round. The higher the score, the better. You'll have to compare your results to other games of the same size, type, and number of players. But soon, you'll know with surprising accuracy how profitable today's game is compared to yesterday's.

 

[4]

“A Glossary of Poker Terms” http://www.conjelco.com/pokglossary.html

 

[5]

“what is the probability of getting a Royal Flush or Four of A Kind” http://www.sit.wisc.edu/~smwise/

 

[6]

http://www.cs.cornell.edu/cs100-sp99/ProgramDocs/P3_sol.htm

P3B Output:

 

P is the probability of having exactly one pair in

an n-card hand.

 

  n           P

----------------------

  2         0.0588

  3         0.1694

  4         0.3042

  5         0.4226

  6         0.4855

  7         0.4728

  8         0.3923

  9         0.2751

 10         0.1599

 11         0.0745

 12         0.0262

 13         0.0062

14            0.0007

 

[7]

“Mathematical Probability” http://www.ms.uky.edu:80/~viele/sta281/mathprob/mathprob.html

 

[8]

“C(13,5)*C(4,1) = 1287*4 = 5148 ways of getting a flush. (including Straight flush 40)”

 

[9]

“The Chances Of Winning The UK National Lottery” http://lottery.merseyworld.com/Info/Chances.html

 

[10]

“Link to nsaa” http://www.schoolnet.ca/vp-pv/amof/e_combI.htm

 

[11]

“We will consider three types of hands, following the book. A) One pair, with three different remaining cards, B) full house (3 of a kind, plus one pair), and C) flush (all cards of the same suit)”

http://www.sscnet.ucla.edu:80/soc/faculty/campbell/210a_Fall1997/210a_notes_10_14_97.htm

 

[12]

“5 cards selected at random from an ordinary deck.” http://www.math.iupui.edu/~momran/m118/chall.htm

 

[13]

“Ref. Book with questions, Answers” http://www.cs.colostate.edu:80/~anderson/cs201/exercises-4.4.html

 

[14]

http://www.thewizardofodds.com/game/pokerodd.html

 


[ProbabilityOf.com]   | [Lotto Wahrscheinlichkeiten]   | [Schürhakenwahrscheinlichkeiten(en) (fr)]    | [DOOM] | [Ostern Daten] | [Einstein Quiz] | [Entweichen-Spiel] | [Excel] | [ISO 8601] | [ISO Taktgeber] | [IQ Tests] | [Symmetrische Demokratie] | [Die Toilettenpapier-Rollenabstimmung] | [Frauen = Probleme] | [WRC]
Sollten Sie Interesse am Internet-Pokern haben, rate ich Ihnen zu einem Besuch von Everest Poker. Mit Eröffnung eines Everest Poker-Spielerkontos haben Sie die Möglichkeit, einen $100-Willkommensbonus zu erhalten. Ich kann Ihnen diesen Pokerraum wirklich nur empfehlen, da Sie hier eine hervorragende Auswahl an Pokertischen und einen enorm hohen Anteil an „kleinen Fischen“ (Anfänger und ungeübte Spieler) vorfinden!

Current local time () Your browser do not support java!
Diese Seite () wurde an downloadet und wurde zuletzt an aktualisiert
Valid HTML 4.01! (Besucher zu poker.shtml seit dem 2005-10-04 )

Sahen Sie irgendwelche Störungen an oder haben andere Anmerkungen zu dieser Seite? Schicken Sie Nikolai Sandved eine E-mail bitte an webmaster@probabilityof.com

"Die Meinungen, die hierin ausgedrückt werden, sind die persönlichen Ansichten und die Meinungen des gegenwärtigen Benutzers und werden nicht im Namen seines oder gegenwärtigen Arbeitgebers gebildet."